CANaspire, a First-in-Human Phase 1/2 Controlled Open-Label Study of BBP-812, a Recombinant AAV9-hASPA Vector for the Treatment of Canavan Disease

Florian Eichler¹, Genevieve Laforet², Haley Andonian¹, Bernard Kinane¹, Elise Townsend¹, Beth Leiro², Kathleen Kirby², Chrissy Burton², Amanda Nagy¹, Adam Shaywitz², John Balser², Annette Bley³

Canavan Disease

Epidemiology and Pathophysiology

- Ultra-rare, fatal autosomal recessive leukodystrophy¹
- 1:100,000 births/year US and EU²
- ASPA³ mutations lead to lack of aspartoacylase (ASPA) activity
- ASPA deficiency prevents breakdown of N-acetylaspartate (NAA) into aspartate and acetate³
- Results in failure to develop and maintain myelination in brain³

ASPA Enzyme Deficiency and NAA Accumulation Lead to Demyelination in Canavan Disease

Disease Features

- Profound neurodevelopmental delay³ with global cognitive, language, and motor impairment⁴
- Fatal; 73% reach the age of 10 years⁵
- Care is supportive/palliative,^{6,7} no approved treatments

CANaspire Gene Therapy Study

- The objective of the CAN*aspire* gene therapy study (CVN-102, NCT04998396) NCT04 to evaluate the safety, pharmacodynamic, and clinical activity of BBP-812 for treatment of Canavan disease
- BBP-812 is a non-replicating, recombinant AAV serotype 9 (AAV9) gene therapy vector containing an expression cassette for the human ASPA transgene

• Study center at Massachusetts General Brigham in Boston, MA

Study Timeline

Expansion Cohort DSMC Review N≥12 Selected Dose **Dose Selection** Review Cohort 1 N≥3

1.32 × 10¹⁴ vg/kg

Abbreviations: CMV, cytomegalovirus; DSMC, Data and Safety Monitoring Committee; IE, immediateearly; ITR, inverted terminal repeat; RFWM, right frontal white matter; vg, vector genomes.

References: 1) Bokhari 2020 https://www.ncbi.nlm.nih.gov/books/NBK430816. 2) Orphanet (https://www. orpha.net/consor/cgi-bin/OC_Exp.php?&Expert=141). 3) Matalon 2018 NCBI Bookshelf. 4) Matalon 1998 Eur J Paediatr Neurol. 5) Bley et al. Orphanet J Rare Dis 2021 16:227. 6) Traeger 1998 Pediatr *Neuro.* **7**) Zubler et al. Evidence-Informed Milestones for Developmental Surveillance Tools. *Pediatrics*. 2022;149(3):e2021052138.

Eligibility Criteria

Key Inclusion Criteria:

- Age \leq 30 months at dosing
- Stable health in the opinion of the Investigator
- » Elevated urinary NAA
- » Biallelic mutation of the ASPA gene
- » Active clinical signs of Canavan disease

Key Exclusion Criteria:

- Positive for total anti-AAV9 antibodies
- Prior gene therapy or other therapy involving AAV
- High-dose immunosuppressant therapy
- Significantly progressed Canavan disease:
- » Continuous/constant decerebrate or decorticate posturing
- » Recurrent status epilepticus
- \gg Seizures unresponsive to \geq 3 anticonvulsants

Assessments

Safety

- Adverse events
- Laboratory tests
- Physical examinations
- ECGs

Efficacy

- Pharmacodynamic: NAA levels in » Urine
- » Cerebrospinal fluid (CSF)

Function:

The same assessments are being performed by the same raters from the CAN*inform* natural history study (CVN-101, CNS 2022 Poster #160)

- Canavan Disease Rating Scale (CDRS)⁵
- from 0-2
- CDC Developmental Milestone Checklist⁷
- by the US Centers for Disease Control
- Developmental skills across all domains rated by trained physiotherapist raters as Absent or Present
- Motor/Developmental Scales permitting) by trained physiotherapist raters

Functional and Medical Assessments

*TIMPSI: Test of Infant Motor Performance Screening Items GMFM-88: Gross Motor Function Measure, 88 Items *Bayley 4: Bayley Scales of Infant Development HINE-2: Hammersmith Infant Neurological Examination, Section 2 CDC Developmental Milestone Checklist

CDRS: Canavan Disease Rating Scale

Vineland 3: Adaptive Behavior Scales, Expanded Interview Form PedsQoL-FIM: Pediatric Quality of Life Inventory (Family Impact Module) Canavan Disease Questionnaire

Physical Examinations Neurological Examinations Opthalmologic Examinations Laboratory Tests

*In-person only

¹Department of Neurology, Massachusetts General Hospital, Massachusetts, USA; ²Aspa Therapeutics, California, USA; ³Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

• Biochemical, genetic, and clinical diagnosis of Canavan disease:

» Brain by magnetic resonance spectroscopy (MRS)

» Records signs, symptoms and developmental skills typically seen in children with Canavan disease, scored by investigator on a scale

Based on checklist of expected developmental milestones published Sample of typical milestones from 2-18 months

» Administered remotely by video and in person (COVID conditions

	4/1	

- **Disease Severity**

Impact on Family

Medical

Added for Remote AIMS: Alberta Infant Motor Scale IMP: Infant Motor Profile Response to Sensory Stimuli

Cohort 1 Demographics and Canavan Disease History						
Part.	Sex	Race / Ethnicity	Age at Informed Consent	ASPA Mutation	Age of Canavan Diagnosis	
1	Μ	Asian, not Hispanic/Latino	27 months	p.Asn54Lys, homozygous pathogenic variant	9 months	
2	Μ	White, not Hispanic/Latino	18 months p.Ser108Leufs*2		5 months	
3	F	White, not Hispanic/Latino	20 months	p.Glu285Ala p.lle16Thr	11 months	

Safety

- To date, 3 participants have received BBP-812; all received the starting dose of 1.32×10¹⁴ vg/kg
- IV infusions of BBP-812 have been generally well-tolerated
- Treatment-related adverse events have been mild or moderate
- No treatment-related serious adverse events reported
- The data and safety monitoring committee (DSMC) has reviewed cumulative safety data and endorsed continued enrollment and dosing of participants
- Current DSMC-recommended immune prophylaxis regimen:
- » 2 mg/kg/day IV methylprednisolone (2.5 mg/kg/day prednisolone equivalent) starting 1 day prior to BBP-812 dosing, continued through inpatient dosing stay
- » After discharge, prednisolone oral formulation:
- 2 mg/kg/day through Day 28 (1 month)
- 1.5 mg/kg/day through Day 49 (Week 7)
- 1 mg/kg/day through Day 77 (Week 11)
- Labs permitting, begin tapering for \geq 6 weeks, with \leq 15% taper per week

Treatment-Emergent Adverse Effects

System Organ Class Preferred Term	n (%)	Trea
Investigations Transaminases increased	3 (100)	
Blood and lymphatic system disorders Lymphopenia Thrombocytopenia	2 (66.7) 2 (66.7)	
Gastrointestinal disorders Vomiting Stomatitis	2 (66.7) 1 (33.3)	
General disorders & admin. site conditions Pyrexia Face oedema	2 (66.7) 1 (33.3)	
Infections and infestations COVID-19	1 (33.3)	
Metabolism and nutrition disorders Feeding disorder	1 (33.3)	
Nervous system disorders Infantile spasms Seizure	1 (33.3) 1 (33.3)	
Psychiatric disorders Irritability	1 (33.3)	
Skin and subcutaneous tissue disorders Hirsutism	1 (33.3)	
Vascular disorders Hypotension	1 (33.3)	

Treatment-Emergent Serious Adverse Event (Unrelated to Study Drug)

System Organ Class
Preferred Term

Nervous system disorders

Seizure

Acknowledgments: Many thanks to everyone whose contributions made this work possible — the patients and families who generously participated in this study; our expert team of motor function raters: site staff at MGB; Veristat clinical, data management, and biostatistics teams; Valis Biosciences Clinical Trials Science and Technology Solutions; Kennedy-Krieger Biochemical Genetics Laboratory; Aspa clinical and patient advocacy teams; and our advocacy partners: Canavan Foundation, Canavan Research Illinois, and the National Tay-Sachs and Allied Diseases Association.

Presented at the Child Neurology Society Annual Meeting San Francisco, CA, USA October 8-12, 2022

atment-Related* n (%)
2 (66.7)
2 (66.7) 2 (66.7)
2 (66.7) 0
2 (66.7) 0
0
1 (33.3)
0 0
1 (33.3)
0
1 (33.3)

n (%)

1 (33.3)

Preliminary Efficacy

- NAA reductions seen in urine, CSF, and brain MRS support restoration of ASPA enzymatic activity in compartments of interest
- NAA levels can be variable but observed degree of NAA reduction was greater than expected from available natural history data
- Although CSF NAA decreased by 77 to 95% 3-6 months after dosing, concentrations were not reduced to non-Canavan levels
- Some literature suggests that lower NAA levels are associated with milder Canavan phenotype
- » More participants and longer follow-up are needed to determine the relationship between restoring ASPA activity/lowering NAA and clinical improvement

100 Reference Range (0-3) 100 150 200 Study Day

Summary and Next Steps

- CANaspire continues to recruit globally, enroll, and dose participants
- Expanding study sites: Massachusetts General Brigham, Boston, MA, USA is currently open, with activation of additional US sites pending
- Positive preliminary results from 3 dosed participants:
- » Safety:
- No treatment-related serious adverse events reported
- DSMC safety reviews have supported continued enrollment and dosing » Preliminary efficacy:
- » Functional data: 2 of 3 participants showed decreased total CDRS scores starting 2-4 months after treatment

- infection and decreased compliance with oral anti-epileptic regimen)
- Participant 3:
- » 4-point improvement in total CDRS score at Month 4 (first post-dosing assessment) vs baseline » Driven by reductions from 1 (mildly affected/impaired) to 0 (normal/not affected/not impaired)
- for truncal hypotonia, head control, reaching, and sitting

- Pharmacodynamic data: Evidence of ASPA enzymatic activity based on substrate reduction with decreased NAA in urine and CNS in all 3 dosed participants

• Preliminary safety and efficacy data to date are encouraging; more participants and longer follow-up are needed to fully determine safety, tolerability, and clinical benefit